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Abstract—In learning-based contact-rich tasks, careful force
control is essential to adapt to environmental changes due to
limited demonstration data and the gap between training and
deployment conditions. This is particularly vital in a wiping
task as manipulating soft and deformable objects (e.g., sponge),
where adaptations in applied force are demanded according to
the wiping surface height and the sponge properties. To solve this
problem, we introduce a method that combines real-time tactile
feedback with pre-trained object representations, enabling robots
to adjust to unseen surface height and object properties. Tested
on real hardware, the approach successfully adapts to changes
in the manipulating environment by analyzing force trajectories,
showcasing a significant advancement in adaptability.

Index Terms—few-shot imitation learning, force-based contact-
rich manipulation, object representation

I. INTRODUCTION

In recent years, robots have been regarded as potential
replacements for human labor, with expectations for their roles
expanding into complex and diverse tasks. However, it is
impractical to pre-program every task, leading to increased
attention towards imitation learning [6]. Imitation learning
enables humans to teach robots complex behaviors intuitively,
without complex programming. However, challenges remain,
such as the need for extensive human demonstration data
and the discrepancies between demonstration and execution
environments [5]. These difficulties necessitate robots not
merely mimicking but adapting to new environmental con-
ditions even from a limited number of demonstration data.
Especially a contact-rich wiping task requires careful force
control according to the wiping surface height and the sponge’s
physical properties.

Therefore, in this paper, we address the challenge – Could
robots learn a versatile manipulation policy via few-shot imi-
tation learning capable of adapting to environmental changes:
the height of manipulating surface and the physical properties
of manipulated objects?

A. Related Works and Contribution

In the field of few-shot imitation learning, [7] and [4]
leveraged large amounts of other/similar tasks’ data to acquire
task embeddings and adapted to downstream tasks with limited
numbers of demonstrations. Specifically, in the context of
learning-based contact-rich tasks, [9] used Gaussian mixture
models and variable impedance control, whereas [10] took ad-
vantage of both imitation learning and reinforcement learning.
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Moreover, multiple studies addressed pre-training representa-
tions for manipulation [8], [3]. Aoyama et al. adopted a semi-
supervised Learning from Demonstration (LfD) framework
and successfully controlled the force according to the object
properties with few-shot imitation learning [1]. However, they
controlled the wiping motions in an open-loop manner, thus
the approach lacked the ability to adapt to environmental
changes, such as variations in wiping surface height.

To address this limitation, we propose a framework that
combines pre-training to represent the physical properties
of manipulated objects and real-time feedback of time-
series tactile information, enabling the robot’s adaptation
to environmental changes from a small number of human
demonstrations. We validate our approach on real hardware
by altering the height of the wiping surface and the physical
properties of the sponge as variable environmental factors
in a wiping task, showcasing the ability to adapt to unseen
environmental conditions by analyzing force measurements.

II. METHODS

The proposed method consists of two steps: a pre-training
step using simulations and a training step using a real robot
before being deployed (Fig. 1), each detailed below.

A. Pre-training step

We pre-train the sponge properties encoder ϕsponge on un-
labeled data Dsim = {(τ exp)1, . . . , (τ

exp)M} to capture the
sponges’ physical properties as the latent space covering a
wide range of the underlying distribution. We use a self-
supervised learning framework inspired by [1] but with a
modified architecture.

B. Training step

We train the motion trajectory decoder θtraj and the tactile
feedback loop ϕtactile − θheight on unlabeled data Dreal =
{τ exp} and few-shot human demonstration data Ddemo =
{(xdemo,∆hdemo, τ demo)1, . . . , (x

demo,∆hdemo, τ demo)N}.
1) motion trajectory decoder θtraj: We train the wiping

motion trajectory decoder θtraj using LfD [1] to generate the
wiping motion according to the manipulated sponge properties.

2) Tactile feedback loop: We train a tactile feedback loop
ϕtactile − θheight composed of the tactile encoder ϕtactile and
the end-effector’s vertical position decoder θheight to obtain
a control input of the next time step’s height displacement
according to the contact state and the manipulated sponge.

The tactile feedback loop takes the force-torque history of
demonstration Ddemo ft = {τ demo

t-4 , . . . , τ demo
t } and unlabeled

data Dreal = {τ exp} of the manipulated sponge as inputs and



Fig. 1. Overview of our proposed framework. First, we pre-train the sponge properties encoder ϕsponge using simulated unlabeled data (Pre-training step II-A).
Then, we train the motion trajectory decoder θtraj and the tactile feedback loop ϕtactile − θheight to obtain the wiping policy with the active inference of applied
force using few-shot human demonstration data (Training step II-B). Finally, we deploy the acquired policy on real robot hardware (Deployment II-C).

outputs the next time step’s vertical displacement ∆ĥdemo
t+1 . The

tactile encoder ϕtactile consists of 2 layers of TCN [2] and
the end-effector’s vertical position decoder θheight consists of
2 fully connected layers. We adopt the Mean Squared Error
and train for 2000 epochs.

C. Deployment

In the task execution, the robot performs a wiping motion
by combining offline (x, y) and online (z) motion execution.
The robot plays back the generated planar motion in the (x,y)
plane offline. The tactile feedback loop actively inferences the
next vertical position ∆ĥtask

t+1 from the previous∼current force
and torque data Dtask ft = {τ task

t-4 , . . . , τ task
t }, and adapts online.

III. EXPERIMENT SETUP

A. Wiping task and robot

To illustrate our proposition, we use a contact-rich wiping
task in which the robot has to adapt its wiping motion to the
wiping surface height and the manipulated sponge’s physical
properties. We prepare three heights of a table (low, high, and
slope) and three sponges (low damping, stiff, and normal).

We use a 6 DoF UR5 e-series robot arm with a 6-axis force-
torque sensor and a sponge attached to its end-effector for both
simulation (robosuite [11]) and real robot experiments.

B. Dataset

The datasets are pre-processed before training; we apply a
Butterworth low-pass filter offline to unlabeled data and online
to force-torque trajectories of demonstrations. Subsequently,
we normalize all data to [0.0, 0.9].

1) Unlabeled data: The robot performs two pre-defined
exploratory actions [1]. We record the 3-axis force and torque
for 4s at a frequency of 100Hz while performing exploratory
actions to obtain force-torque trajectory τ exp ∈ R400×6. We
collect 1000 unlabeled data in simulation for pre-training by
randomizing the sponge’s friction, stiffness, and damping. For
training, we collect 1 demonstration unlabeled data of a normal
sponge. ‘Normal’ refers to common friction, stiffness, and
damping properties.

2) Demonstration dataset: A human demonstrator kines-
thetically performs the desired wiping motion by moving the
robot’s end-effector in free drive mode. The demonstrator
wipes the inclined table (slope) applying as much force as
possible. We collect 8 demonstrations using a normal sponge



TABLE I
EXPERIMENTAL RESULTS: CHANGES IN HEIGHT

Table Force∗ Baseline Proposed
height Ratio Average∗ Integral∗ Ratio Average∗ Integral∗
Low -17.2 72% -1.2 -28.9 100% -21.0 -525.3
High -17.2 68% -5.9 -147.1 100% -21.0 -524.2
∗Force, Average in N, Integral in N·Timestep

TABLE II
EXPERIMENTAL RESULTS: CHANGES IN SPONGE PROPERTIES

Sponge Force∗ Baseline Proposed
properties Ratio Average∗ Integral∗ Ratio Average∗ Integral∗

Normal -17.2 72% -1.2 -28.9 100% -21.0 -525.3
Low damping -29.1 0% 0.3 8.6 100% -28.3 -707.5

Stiff -65.6 0% 2.2 52.7 100% -31.9 -796.6
∗Force, Average in N, Integral in N·Timestep

with varying wiping speeds. We record the robot’s end-
effector’s position, force and torque in the (x, y, z) axis at a rate
of 2.5Hz for 10s to obtain motion trajectory xdemo ∈ R25×2 (2
absolute positions in (x, y) axis), vertical position displacement
trajectory ∆hdemo ∈ R25 (vertical displacements from the pre-
vious time step), and force-torque trajectory τ demo ∈ R6×25.

IV. RESULTS AND DISCUSSIONS

To evaluate our method, we experimented with the robot
with varying heights of the wiping table (IV-A) and sponges
manipulated (IV-B). For each verification, we compared the
contact with the table by examining the ratio of time steps
in which the sponge contacted a table. Next, we examined
the force applied to the sponge to compare whether the robot
’wiped’ with the sponge. Specifically, we used the average
vertical force applied to the sponge and its integral.

A. Verification of the ability to adapt to changes in height

We varied the table height (low and high) from the demon-
stration setup (slope) to evaluate our proposed method’s ability
to adapt its wiping motion to wiping surface heights unseen
during training. The results are shown in Table I and Fig. 2.

To adapt wiping motions to changes in the wiping surface
height, the robot should apply the same force to the sponge
regardless of the height. With the same sponge, the robot
should wipe with as much force as possible. With the baseline,
the sponge was 70% of the time in contact with the table,
and the average force applied was 3 to 10 times smaller than
expected, showing that the robot was not ’wiping’ adequately.
Additionally, the average force applied differed with the table
height, indicating an inability to adapt to changes in the height
of the wiping surface. With the proposed method the sponge
was always in contact with the table and the ’wiping’ was
successful both when the height was low and high, as the
robot maintained an appropriate average force on the sponge.
Furthermore, the force applied did not vary much whether a
table was low or high, indicating the ability to adapt to the
height changes.

B. Verification of the ability to adapt to changes in sponge

We varied the sponge properties (low damping and stiff)
from the sponge used in demonstrations (normal). The height

Fig. 2. Plots of robot end-effector’s vertical position and force-torque profiles
in representative cases comparing our proposed method with baseline.

of the table is the same as the low condition described in IV-A.
The results are shown in Table II and Fig. 2.

Adapting the wiping motions to changes in the sponges’
properties means adjusting the force applied to the sponge. In
Table II, the three sponges are ordered by absolute vertical
force applied during the exploratory actions. The average
force applied during the experiments should match this order.
When the sponge was changed, the baseline method failed
to maintain contact with the table (ratio 0%), and the average
force was very small, showing that the robot was not ’wiping’.
Additionally, the integral of the force turned positive when
changing the sponge due to the gravity force pulled by the
sponge’s weight. Therefore, the baseline is unable to adapt
to unseen sponges. On the other hand, the proposed method
successfully keeps contact at all times and applies an average
force comparable to that expected, indicating that a robot can
adapt to unseen sponge properties.

V. CONCLUSION

This work tackles the challenge of robots adapting to
environmental changes in manipulating deformable objects
in contact-rich tasks with few human demonstrations. Our
method combines real-time tactile feedback with pre-trained
object representations. Focusing on a wiping task, we varied
table heights and sponge properties. Experimental results show
that the robot adapts to unseen manipulating surface height
and object properties with our method. In the future, we aim
to enable robots to learn the physical properties of deformable
objects from a limited number of data, eliminating the need
for extensive pre-training to avoid the challenging task of
simulating their dynamics.
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